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Abstract  

The principle of general relativity means the principle of general Lorentz-covariance of 
the physical equations in the language of tetrads and metrical spinors. A general Lorentz- 
e~variant calculus and the general Lorentz-covariant generalisations of the Ricci calculus 
and of the spinor calculus are given. The general Lorentz-covariant representation implies 
the Einstein principle of space-time covariance and allows the geometrisation of gravita- 
tional fields according to Einstein's principle of equivalence. 

1. The Meaning o f  General Lorentz-Covariant Derivatives 

To understand the principle of general relativity it is necessary to 
distinguish between systems of coordinates {x i} and systems of reference Z': 
the former are quite mathematical and describe mathematical relations. 
The independence of physical quantities of the choice of the coordinate 
system is a logical necessity, but implies no physical consequences. On the 
other hand systems of reference have physical reality; they correspond to 
an arrangement of measurements, which determine the physical quantities. 

In the simplest case such a system is realised by three measuring rods and 
one normal clock. To every event of the space-time V4 three rods and a 
clock are attached (Treder, 1966). 

A system of reference 27 is represented mathematically by a field of four 
vectors hai, which can be assumed to be orthonormalised: 

gik = has hBk ~]AB, ~]AB = hA ~ hB k g~k (1.1) 

Here, g~k means the metric tensor of the space-time, 

VAn = diag (-1,  -1 ,  -1 ,  +1) 

the M i n k o w s k i  tensor; the Latin minuscules are tensorial indices in the 
space-time and the Latin capitals denumerate the vectors, both indices 
run from 1 to 4. The has themselves are functions of the space-time- 
coordinates x x 

Oh A 
Ox t ae'-f hA~.L # 0 
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Equation (1.1) is the condition for compatibility of the system of reference 
with a space-time of given metric gtk- A coordinate transformation from 
the Einstein group 

Oxk A 
x'Z = x't(xk), h'At= ffZ~x,~h k (1.2) 

transforms the tetrad vectors corresponding to the metric 

axk h a Oxt Ox~ Oxl (1.3) 
g ~ m  - -  OX,~ k O~xS~-,~ hm Ox.m Ox.mgkt 

Equation (1.1) assigns universal Minkowski tangent space M4 to the 
space time V4. This M4 represents the manifold V4 + dual to V4. The trans- 
formation matrix hat, connecting V4 and V4 +, is anholonomic in general 
with the Einstein object of anholonomy (Einstein, 1928; Schouten, 1953): 

A t k t -  ~l, trtoA hat.k) (1.4) - -  ~*~A V ~ k . l  - -  
Y 

the hat being a system of reference compatible with the given metric gik. 
Also, the tetrad hAk (Lorentz'rotated in the Minkowski space V4 +) represents 
a compatible system of reference: 

hBt = OOBA h a t  ( 1 . 5 )  

with 

O)a C (-OBC = 7]A B (1.6) 

The principle of general relativity now requires the equivalence of all 
systems of reference compatible with the given metric structure gik of the 
space-time. 

This supposition is realised by the geometric objects of the space-time 
V4 iff these depend on the Lorentz invariant combination (1.1) of the 
tetrads and its derivatives only (see later). 

The measured values ~r of physical quantities are invariant with regard 
to choice of coordinate system, they have to be pure functions of the point 
and therefore scalars in .the space-time: 

~/r _~ ~r(Xt(X/l)) = ~r(Xl ) (1.7) 

Corresponding to the principle of relativity, the relations between measured 
values of physical quantities also have to be independent of the system of 
reference chosen. Especially, we have to require that ~ r =  0 iff f i r=  0. 
From this it follows that the matrix has to behave covariantly with respect 
to the Lorentz transformations (1.6), i.e. the matrix of the measured values 
q~r has to be a Lorentz tensor of any degree: 

~ a , . . . . . .  = o~A,cl.., o~,1,,... ~c,.. "o,... (1.8) 

From (1.7) and (1.8) it follows by (1.1) that a space-time tensor of the 
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same degree can be coordinated unambiguously to every Lorentz tensor 
of measured values of physical quantities: 

4 ~''' kl . . .  = hA/1"'" hB'k~... 4 A''  'B~... (1.9) 

These space-time tensors for their part are Lorentz invariant. Lorentz 
tensors 4 A'' ' , . . .  and space-time tensors 4 ~ "k... are dual quantities. 

The ordinary differential d4 ~'' "k... of a space-time tensor itself is not a 
tensor, for instance: 

l O x  l i  , 3 z x  l i -  \ 
d41'=4(idx '=~-~x;x~4, t+ ~ 4 !,#dx' (1.10a) 

The differential becomes a tensor by addition of a compensating quantity 

I'], t 4 k dx t (1.10b) 

where the affinity F~,t satisfies the transformation law 

�9 3xl~ Oxr OxP --m Oxil OZm (1.10C) 
In% ~x~ Ox/k 0Z17" ~ 3x.~ ~xik ~x/, 

From the g~k and their derivatives alone, the Christoffel symbols only can 
be constructed as affinity: 

-~l [/I] = 1  ir = ~g [--gg~.,+g~r,k+grk,,] (1.10d) 

They are Lorentz invariant. Likewise, the ordinary differential 

d4  A = 4 A, t dx  ' = 4 A , h * .  dx  ~j ~ 4 A . d x "  (1.1 la) 

of a Lorentz vector 4 A is not a Lorentz tensor: 

d4 A = (e~ 4")., dxt (1.11 b) 

= (r 4",, + o.%., 4") dx' 

A Lorentz covariant derivative has to be constructed using a compensating 
Lorentz affinity 

LAIn 4 B dx'  = LABc 4" dxC (1. l lc) 

with the transformation law 

LAIn = o J Ac oJ D~ L Cm + ~O AD O J B D, l (1.11 d) 

The only Lorentz  affinity which can be constructed by the tetrads and their 
derivatives alone readM" 

. _  ,A __ + h  a h ~ i A L A B I - - - - r  B l -  i . : l  = - h ,  h ~:l (l.12a) 

4" Start ing in a flat V4 f rom a special relativistic inertial f rame,  which reads h ~  = 3At 
in cartesian coordinates ,  and  per forming  general L o r e n t z  t r ans format ion  hA~ = o, an3Bt 
we find 

~/ABl ~ --(.oAc s l 
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Indeed these quantities realise the transformations law 

~ A B '  - -  LOaC 601~ o rCDt  = LOAD LOB o, l = -]-(oAD, 1 LOB O (1.12b) 

The quantities (1.12a) are the Ricci rotation coefficients of the tetrad field 
hA~. Their space-time components (Eisenhart, 1927) 

7tkl = ha t hBk rant = ha t hak:l (1.12C) 

= 4t , + 4r F'r,)  

are not legitimate general relativistic quantities, they actually are space-time 
tensors, but not Lorentz scalars. In that respect they are analogous to the 
Christoffel affinity/~*u, which is Lorentz scalar, but not a space-time tensor. 

Using the Lorentz affinity (1.12a) we define a Lorentz covariant derivative 
with the Leibniz rule, for instance the derivative of a mixed Lorentz tensor 
~ A  by 

~AB//C = 4A.//~ hc' = 4an.c -- raoc 4on + 7DBC ~A (1.13) 

For a mixed space-time and Lorentz tensor, e.g. q~A, we define the general 
covariant (Lorentz covariant and coordinate covariant) derivative using 
the Ricci rotation coefficients and the Christoffel affinity by 

dpA,m = ~a,. z -- 49, rAn, -- ~ar/ 'rtl (1.14a) 

This general covariant derivative specialises to the coordinate covariant 
derivative 

~,b~///t = q~i.z + Fir, ~b ' = q~':, (1.14b) 

for pure space-time quantities and to the Lorentz covariant derivative 

~A]]]l = ~ A , l  _ r A B l  f~B = ~a / /1  (1.14c) 

for pure Lorentz tensors. 
Besides the known indentities 

3tk;t = 3'k,l = 0 (1.15a) 

~AB/ / l  = ~AB, l = 0 (1.15b) 

gik///, = g~k:z = 0 (1.15c) 

~AB/ / / I  = ~AB/ / t  = t A B '  ~- r B A I  = 0 (1.15d) 

we find also the covariant constance of the tetrads 

hAi / / i t  = h A i . ,  - -  hBl  r n B t  - -  hnr l~ril (1.16) 

= h a t , t  - -  hal.t - h a t  .l-'rit = 0 

Indeed 

7ikl + l'~k, = A~kl = h f hAk., 

is the Einstein affinity with integrable parallelism (Einstein, 1928). 

0.17) 
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Because of (1.1) and (1.16) there exists a unique correspondence (duality) 
between the Lorentz  covariant and the coordinate covariant representation 
of tensorial quantities. For instance, it yields 

CAll c =(hAi el)lit hZc = ,~i. l hat hc t (1.18a) 

(Eisenhart, 1927) and 
eA//cD = r h A, hc k ho' (1.18b) 

Lorentz covariant derivatives of Lorentz tensors can be replaced by co- 
ordinate covariant derivatives of space-time tensors, and vice versa. Both 
types of covariant derivatives are dual to each other. 

Especially, the curvature tensor of the Lorentz affinity equals the Riemann 
curvature tensor. It yields 

- r  = ( r  - r h",  h,, hc' 

= _R~kt r hAi hBk hc z = _r RADBC (1.19) 

The theorem of inertia in special relativity 

ut,k u k = 0 

can be expressed by four scalar equations in a Lorentz  covariant way 

uA] ]c ~lC = ( uA, i -- yABi uB) hlc uC = 0 (1.20a) 

and therefore it leads to the geodesic equation in a Riemann space /14: 

U~;k U ~ h(  ~ = uA/ /c U c = 0 (l.20b) 

The requirement of covariance against any point-dependent Lorentz  
rotation is of decisive importance in the derivation of the geodesic equation. 
Only the covariance against rigid Lorentz  rotations required (~OAB, I = 0), 
the ordinary differential 

lli;k U k hi A = uA//c U c = 0 

had not to be completed by a Lorentz affinity: 

r I dx' = (r h" ,  + h~,,, r  dx' (1.21) 

(1.21) lead to the dual coordinate covariant derivative 

dq~A hak = (r + hA k hA,t r  dx'  (1.22) 

In these differentials the coordinate affinity equals the integrable Einstein 
connection dikl .  Then the tensorial transport in the V4 is integrable, there 
is no affine curvature and therefore no gravitational action. Accordingly 
the principle of general relativity implies the Einstein principle of space-time 
covariance of the physical equations formulated in space-time by the 
requirement ofLoren tz  covariance of the relations between measured values 
of physical quantities and enables the geometrisation of the gravitational 
field. 
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Under the assumption that the structure of the space-time is given only 
by the metric g~k and that any physical quantity is entirely given by Lorentz 
tensors, it is possible to write the physical equations unambiguously by 
space-time tensors, independent of any system of reference, and the 
principle of general relativity reads in this case: 'The basic physical equations 
can be formulated in the V4 without referring to any system of reference 
(Einstein principle of genera/relativity).' 

For the relations between the measured values following from these basic 
equations in V4 to be independent of the choosen coordinate system (and 
therefore not to forbid interpretation), these equations in space-time have 
to be coordinate covariant (Einstein principle of covariance). The Einstein 
form of the principle of general relativity represents the dual counterpart 
of the requirement of Lorentz covariance. 

2. General Lorentz-Covariant Caleulus and Spinor-Cateulus 

There are two equivalent representations (dual to each other) for tensor 
fields, realizing the principle of general relativity (Treder, 1966): 

(1) the Lorentz covariant representation using coordinate invariant 
quantities r "B .... and 

(2) the coordinate covariant representation using Lorentz invariant 
quantities qg-. "k...- 

The equivalence of both representations follows from the unambiguity of 
the assignment 

C a . . . . . . = h a c " h k ' " r  (2.1a) 
and 

~ 'k... --- ha t. . .  hng.., q~a . . . . .  (2.1b) 

Such an unambiguous coordination becomes impossible as soon as spinor 
quantities are introduced. The introduction of spinor quantities implies at 
first nothing further for tensor fields than the replacement of the single- 
valued tensor representation of the Lorentz group by the double-valued 
unimodular representation. At this metric spinors are assigned to the 
tetrads of the systems of reference by 

az" * = ha I era" ~ (2.2) 

In (2.2) the a au~ are the constant Pauti spin matrices. The Greek indices are 
spinor indices and run from 1 to 2. 

The orthogonality condition (1.1) now reads 

and 
gkl = ak ~iL Crl [j9 Y~,8 Y/*~, = hak hnl a a ~t~ orBS9 Y ~  Y[*~ (2.3b) 

Here the quantities 

y~# = -3e~ = Yaa = -Ya~ with lr Bl = 1, y=~ y~r = 3 J  (2.4a) 
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are the metric tensors of the spinor space and by (2.3) equal to 

712 = --721 = --712 = 721 = 1 (2.4b) 

The representation (2.3) is invariant with respect to unimodular trans- 
formations in spinor space $2 resp. $2", i.e. transformations 

cTi ~ = c~a, ~ ai ~ (2.5) 

of the metric spinors, where the transformation matrices c ~  = cc,(x ~) 
realize the condition 

] ~ l  = I~uv[ = 1 (2.6) 

The measured values being referred to the spinor spaces $2, $2", the principle 
of general relativity implies that all measured values transform as spinors-- 
corresponding to the unimodular invariance of (2.3) 

Corresponding to (2.2) this condition for spinors of degree 2n, like 

~bu~, ~b,~,  etc. 

is equivalent to the condition that the measured values are Lorentz  tensors: 

~v~ = tray9 ~a = ffiu~ h a  / ~ a  = cr,u ~ ~f  (2.7b) 

~b~ being a spinor, the ordinary derivative 

d~b, = ~b,.z dx'  (2.8a) 

is no spinor, for we have 

Cv., = (e .  u ~bu),, = ~ u  ~b.., + c~vv.z ~b. (2.8b) 

By the introduction of some compensating spinor affinity A~'t3z with the 
transformation law 

-4~'~l = et3" e% A"ul + e~a c,a•.t (2.8c) 

the corresponding Lorentz  covariant spinor derivative (Iwanenko, 1965; 
and Elementary  Particles and  Compensatory  Fields. Moskwa, 1964) 

~b.//, dx '  --- (~b.., - A u  , ~b,)dx' (2.9) 

is constructed. The spinor affinity has to be a space-time tensor for the 
spinor derivative (2.9) to be coordinate covariant. The only affinity of this 
kind which can be constructed from the metric spinors and their derivatives 
alone is the affinity of Infeld and van der Waerden (1933): 

A ~  = � 8 9  criB~;t = �89 ~i~ ~ (2.10) 

Again we are able to define general covariant derivatives for mixed 
tensor and spinor quantities, for example 

~k,///t = ~ . ~  + 1-'~,, ~ ' ,  - A~'~ r (2.11) 
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By (2.11) we obtain the known general covariant constance of the metric 
spinors 

(Tklzv/]/l ~- ukffr "Jr (~rl'tv f~krl -~ (Tk~tv A ~ t l  ~- aklz& Ar ~ 0 (2,12a) 

Indeed, we have 

c?~l//l = (~k~.~ + cr,~ Ak = 0 (2.12b) 

where Akr~ is the Einstein affinity (1.17) 

dkrt = hak ha~.~ = a ~  ~ru~.t (2.13) 

(From (2.10) and (2.4) it follows 

= - A ~ t  + A~z = 0 (2.14) 

There exists a duality between the coordinate covariant equations of 
tensor fields and the Lorentz covariant equations for the corresponding 
spinor field of even degree: 

Cu~//, = (~,u~ r = (~iu, ~':, (2.15) 

With (2.2) and (1.14) and with 

we also get 

~lt~/]]l CA[[l (T Akt~ -~- c a  tT AI~]/l (2.16) 

But because of (2.12) and (1.16) we have 

~au~l/iZ = ~l~'ll/t ha~ + (~"~ hau//t = 0 (2.17) 

For this it follows from (2.15) and (2.10): 

= r = ( 2 . 1 8 )  

For spinors of even degree dual to tensor fields the spinor derivative and 
the Lorentz covariant derivative are equivalent. The Lorentz covariant 
equations for spinor fields of odd degree cannot be formed into coordinate 
covariant equations without spinor indices. 

As it has to be from reasons deriving from the theory of cognition, the 
equations for any spinor fields can be formulated coordinate invariant 
and~corresponding to the principle of relativity--also Lorentz covariant. 
But for spinors of odd degree there is no representation which is Lorentz 
invariant and coordinate covariant. Accordingly, the general version of the 
principle of general relativity is represented by the postulate that all equation 
of physics can be formulated in Lorentz covariant and coordinate invariant 
terms. For tensorial quantities we have then also the dual version, that the 
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equations of physics, concerning tensors, can be formulated in Lorentz 
invariant and coordinate covariant terms. 

By the coordinate invariant and Lorentz covariant formulation of the 
physical equations, the principle of general relativity can be realised for 
spinor as for tensor fields; a break-down of this principle in the sense of the 
general Lorentz covariance of the relations between physical quantities can 
take place only in this way: the geometry of the space-time V4 is determined 
not only by the Lorentz invariant metric gik, but also by some non-invariant 
combinations of the tetrad field hal. That implies, the laws determining the 
structure of the space-time have to be continually coordinate covariant. 
If  these equations determine only the metric gik, then the structure of the 
space is Lorentz invariant. If also some non-invariant combinations of the 
ha~ a r e  determined, then the general Lorentz covariance of the geometric 
structure is broken off. Especially, the general Lorentz covariance of the 
structure of the V4 is repealed in full, if all sixteen components of the tetrad 
field hAf a r e  determined by the structure equations of the space-time 
V4 (Treder, 1967). 
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